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Abstract. In this paper we analyze how to improve the benefits of n producers when: (1) each producer
i faces a linear production problem given by max{ci xi : Ai xi ≤ bi , xi ≥ 0}, and (2) maintaining the
production capabilities of each producer is mandatory. In order to maximize the benefits, the producers
decide to trade their resources while ensuring their initial individual gains. We study the games which
describe this non-centralized linear production situation when players do not cooperate (section two), when
players cooperate and side payments are possible (section three), and when players cooperate and side
payments are not possible (section four).
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1. Introduction

In the classical paper by Owen (1975), the linear programming games are first introduced
and analyzed. These games model linear production situations in which a group of
players, each of them facing a linear production problem, agree to join their resources
and to centralize their production, in order to improve their benefits. This approach
implicitly assumes that the producers dismantle their production facilities and transfer
their resources to a unique active production plant. Nevertheless, it is easy to imagine
that dismantling facilities is not always feasible, mainly because of social side-effects,
like unemployment or social disorders. In addition, it is not necessarily optimal. There
are cases, see our Example 3.1, where centralizing all the resources is not a good deal.
The centralized approach to linear production has been also used to study more general
models in papers like Granot (1986) or Curiel, Derks, and Tijs (1989).
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In order to search for a compromise between improving the benefits and preserving
the production capabilities of the different producers, it is interesting to perform the anal-
ysis of non-centralized production models. In Fernández et al. (2003) producers look for
a division of their total surpluses, after each of them has implemented a particular opti-
mal production plan. Kalai and Zemel (1982) and Feltkamp et al. (1993) have considered
other variations of decentralized linear production situations.

Our approach in this paper looks for an optimal allocation of the resources, im-
proving or at least maintaining the individual optimal benefits of each producer. More
explicitly, we consider a situation with n producers of the same goods, with different
linear technologies and prices. The producers can trade their resources with the following
two constrains: (1) they cannot shut down their production plants, and (2) each produc-
tion plant should, at worst, maintain its benefits after the trade. Both such constrains
aim to avoid negative social side-effects produced by the total or partial dismantling of
one or more plants. We propose several approaches to analyzing this situation. The first
one (Section 2) assumes that producers behave non-cooperatively. This means that each
agent individually requests a portion of the total resources (such that he improves his
initial benefits). The goal is to identify those claims leading to Nash equilibria. Also,
we give some conditions for the existence of two refinements of the Nash equilibrium
concept that we previously introduce. In the second approach (Section 3), producers are
supposed to act cooperatively and, moreover, it is assumed that every allocation of the
total gains is possible. If a coalition is formed, its members share their resources in order
to maximize the sum of their benefits, while improving or, at worst, maintaining the
benefits in all their plants. Our purpose, in this second analysis is to identify some core
allocation, and to establish the relationship between the payoff of some Nash equilibria
of the non-cooperative case with the imputations arising in the cooperative situation.
Finally, we analyze the non-transferable utility case (Section 4), where agents cooperate
but there are some restrictions for the distribution of the joint benefits. In this context we
provide some examples and some results regarding the core of the corresponding NTU
game.

2. The non-cooperative analysis

Let us consider a set N = {1, . . . , n} of producers. For each agent i ∈ N we denote by
Ai ∈ R

p×q , ci ∈ R
q , and bi ∈ R

p the technology matrix, the unit selling price vector
and the resource bundle, respectively. We assume that all the elements of Ai , ci and bi

are non-negative. Under our hypothesis of linear production technologies, the optimal
individual production policy for agent i ∈ N is obtained solving the problem:

max ci xi ,

s.t.: Ai xi ≤ bi ,

xi ≥ 0.

(Pi )
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For every possible b̄i , we denote oi (b̄i ) := max{ci xi : Ai xi ≤ b̄i , xi ≥ 0}, the value of
the linear problem as a function of the right-hand parameters. For any subset S ⊆ N and
any profile of vectors (b̄1, . . . , b̄n), we denote b̄(S) = ∑

i∈S b̄i .
Assuming that the resources of the different producers are available in a common

bundle, their non-cooperative interaction to allocate their resources can be modelled as
the following strategic form game. For each agent i ∈ N , its set of pure strategies is
given by

Si = {εi ∈ R
p : 0 ≤ εi ≤ b(N )}.

Player i’s payoff function is defined for every profile of strategies ε = (ε1, . . . , εn) by:

K i (ε) =



max{ci xi : Ai xi ≤ εi , xi ≥ 0} if
∑
i∈N

εi ≤ b(N ),

oi (bi ) otherwise.

Note first that, in an equilibrium, each agent i will not accept neither dismantling his
production facility nor having a benefit smaller than oi (bi ).

Let us see that this problem is not a trivial one, in the following sense. For any i ∈ N ,
let xi

0 be an optimal solution of Pi and bi
0 the vector of resources consumed to implement

the optimal production plan xi
0, i.e. bi

0 = Ai xi
0. Then, the profile (b1

0, . . . , bn
0) may not be

a Nash equilibrium of the corresponding game. We illustrate it in the following example.

Example 2.1. Let us consider the production system given by N = {1, 2}, c1 = c2 = 1,
b1 = (1, 0), b2 = (0, 1) and

A1 = A2 =
(

1
1

)
.

Next we collect the optimal solutions and their corresponding optimal values and indi-
vidual consumptions of problems P1 and P2.

x1
0 = 0, o1(b1) = 0, b1

0 = (0, 0),
x2

0 = 0, o2(b2) = 0, and b2
0 = (0, 0).

Obviously, the profile of strategies (ε1, ε2) = ((0, 0), (0, 0)) is not a Nash equilibrium of
this game.

In general, the game (S1, . . . , Sn, K 1, . . . , K n) has many Nash equilibria. For instance,
every profile ε in which some players ask for ”too much” is a Nash equilibrium in this
situation (consider, for instance, that b(N ) > 0 and take (ε1, . . . , εn) with |{i ∈ N : εi =
b(N )}| ≥ 2). However, these equilibria are not really interesting. Let us look for other
Nash equilibria.
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It is clear that every ε such that
∑

i∈N εi = b(N ) and oi (εi ) ≥ oi (bi ), for all i ∈ N ,
is a Nash equilibrium of this game. In particular, (b1, . . . , bn) is a Nash equilibrium.
Notice that there may exist Nash equilibria which do not allocate all the resources. This
is illustrated in the next example.

Example 2.2. Let us consider the production system of Example 2.1 after introducing
a new restriction. Now, N = {1, 2}, c1 = c2 = 1, b1 = (1, 0, 1), b2 = (0, 1, 1) and

A1 = A2 =

1

1
1


 .

It is clear that the profile (ε1, ε2) = ((1/2, 1/2, 1/2), (1/2, 1/2, 1/2)) is a Nash equilib-
rium of this game. However, ε(N ) = (1, 1, 1) and b(N ) = (1, 1, 2), so there is an excess
of the third resource which is not used according to this Nash equilibrium.

The next refinements of the Nash equilibrium concept are interesting in this context.

Definition 2.3. A strategy profile ε is said to be a weakly productive equilibrium if it is
a Nash equilibrium and, moreover, there exists i ∈ N such that K i (ε) > oi (bi ).

Definition 2.4. A strategy profile ε is said to be a productive equilibrium if it is a Nash
equilibrium and, moreover, for all i ∈ N , K i (ε) > oi (bi ).

The next proposition provides a necessary and sufficient condition for the non-
emptiness of the set of weakly productive equilibria.

Proposition 2.5. The set of weakly productive equilibria is non-empty if and only if
there exists i ∈ N and b0 such that

K i
(
b−i

0 , b(N ) − b0(N \ {i})) > oi (b
i ),

where b0 = (b1
0, . . . , bn

0) is a vector of resources consumed to implement an optimal
production plan x0, i.e. bi

0 = Ai xi
0, and (b−i

0 , b(N )−b0(N \{i})) is the profile equal to b0

in all its components different from the i-th component, which equals b(N )−b0(N \{i}).

Proof. It is clear that, if K i (b−i
0 , b(N ) − b0(N \ {i})) > oi (bi ) for some i ∈ N , then

(b−i
0 , b(N ) − b0(N \ {i})) is a weakly productive equilibrium. Conversely, suppose that

ε is a weakly productive equilibrium and take i ∈ N with K i (ε) > oi (bi ). Then, there
exists b0 such that

εi ≤ b(N ) − b0(N \ {i}),
and, thus,

K i (b−i
0 , b(N ) − b0(N \ {i})) ≥ K i (ε) > oi (b

i ).
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It is easy to check that the set of productive equilibria is empty if, for all b0, vector of
resources consumed to implement an optimal production plan, there exists some i ∈ N
such that K i (b−i

0 , b(N ) − b0(N \ {i})) = oi (bi ). Besides, a sufficient condition for the
non-emptiness of the set of productive equilibria is that there exists such a b0 for which

ε =
(

b(N ) − b0(N )

n
+ b1

0, . . . ,
b(N ) − b0(N )

n
+ bn

0

)

satisfies that K i (ε) > oi (bi ) for all i ∈ N .
Another interesting property of this model is that the set of payoff undominated

Nash equilibria is non-empty. Moreover, our next result characterizes the Nash equilibria
whose corresponding payoff vector are undominated.

Proposition 2.6. For any payoff undominated Nash equilibrium (ε̄1, . . . , ε̄n) there exists
(x̄1, . . . , x̄ n) such that (ε̄1, . . . , ε̄n, x̄1, . . . , x̄ n) is a Pareto-solution of

max (c1x1, . . . , cnxn)
s.t.: Ai xi − εi ≤ 0, i ∈ N ,

−ci xi ≤ −oi (bi ), i ∈ N ,∑
i∈N

εi ≤ b(N ),

xi ≥ 0, εi ≥ 0, i ∈ N .

(UNP)

Conversely, for any Pareto-solution (ε̄1, . . . , ε̄n, x̄1, . . . , x̄ n) of problem (U N P) then
(ε̄1, . . . , ε̄n) is a payoff undominated Nash equilibrium.

The proof is straightforward from the definitions of payoff undominated Nash
equilibrium and Pareto-solution of a vector optimisation problem.

3. The transferable utility cooperative analysis

In this section we study our production situation from a cooperative point of view and
we suppose that side payments are possible. Thus, this situation can be modelled as the
TU-game (N , v) where v(∅) = 0 and, for any S ⊆ N , v(S) is the maximum of the
following linear programming problem

max
∑
i∈S

ci xi

s.t.: Ai xi − εi ≤ 0, i ∈ S,

−ci xi ≤ −oi (bi ), i ∈ S,∑
i∈S

εi ≤ b(S),

xi ≥ 0, εi ≥ 0, i ∈ S.

(P S)
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In this formulation, players in the coalition S share their resources under the condition
that the new distribution has to preserve each individual optimal value and none of the
plants are shut-down. In the classical linear production situation, where ci = c, Ai = A,
for all i ∈ N (Owen (1975)), it is assumed that the production is centralized by one of the
producers and the benefits are later allocated among the producers. The corresponding
TU-game (N , w) allocates to every coalition S ⊆ N the maximum value of the linear
programming problem

max cz

s.t.: Az ≤ b(S)

z ≥ 0

(P S
O )

The next example illustrates that when the technology matrices and price vectors are
different, producers can achieve higher benefits in our model than in the centralized
version.

Example 3.1. Let us consider the production system given by N = {1, 2}, c1 = (2, 6, 3),
b1 = (7, 1), c2 = (2, 4, 6), b2 = (1, 5), and

A1 = A2 = A =
(

1 2 1

1 1 3

)
.

Below we present the optimal solutions and their corresponding optimal values and
individual consumptions.

x1
0 = (0, 1, 0), o1(b1) = 6, b1

0 = (2, 1),

x2
0 = (0, 0, 1), o2(b2) = 6, and b2

0 = (1, 3).

In our approach, v(1, 2) is given by the optimal value of the problem

max
2∑

i=1
ci xi

s.t.: Axi − εi ≤ 0, i = 1, 2,

−c1x1 ≤ −6,

−c2x2 ≤ −6,

ε1 + ε2 ≤ (8, 6),

xi ≥ 0, εi ≥ 0, i = 1, 2.

Its optimal value is 25.8 and an optimal solution is given by

(x̃1, x̃2, ε̃1, ε̃2) = ((0, 3.3, 0), (0, 0.3, 0.8), (6.6, 3.3), (1.4, 2.7)).

Notice that the amount of the second resource used by agent two is smaller than the
amount he needs to reach his optimal value individually. Now, if we define w(1, 2) =
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max{v̄1(1, 2), v̄2(1, 2)}, where

• v̄1(1, 2) = max{c1x : Ax ≤ (8, 6), x ≥ 0},
• v̄2(1, 2) = max{c2x : Ax ≤ (8, 6), x ≥ 0},
we get v̄1(1, 2) = 24 and v̄2(1, 2) = 19.2. Then, w(1, 2) = 24 < v(1, 2) = 25.8.

Although Example 3.1 shows that the centralized procedure (inspired in Owen’s model)
and our model may give rise to different associated TU-games, we will see now that this
is not the case if ci = c, Ai = A, for all i ∈ N . Before proving this feature we introduce
some notation. For every coalition S ⊆ N , we denote by DS the dual of P S , which is
given by:

min − ∑
i∈S δi oi (bi ) + γ b(S)

s.t.: yi Ai − δi ci ≥ ci , i ∈ S,

−yi + γ ≥ 0, i ∈ S,

yi ≥ 0, δi ≥ 0, i ∈ S,

γ ≥ 0.

(DS)

The dual problem of P S
O will be denoted by DS

O and it is given by:

min αb(S)

s.t.: αA ≥ c,

α ≥ 0.

(DS
O )

Theorem 3.2. Let us consider a production situation where ci = c, Ai = A, for every
i ∈ N . Then, we have v(S) = w(S) for any coalition S ⊆ N .

Proof. Let us take any coalition S ⊆ N . Clearly, w(S) ≥ v(S).
Let zS denote an optimal solution of problem P S

O and observe that (xS, εS) is feasible for
the problem P S , where for each i ∈ S

(xi
S, ε

i
S) =




(
oi (bi )zS∑
j∈S o j (b j )

,
oi (bi )b(S)∑

j∈S o j (b j )

)
, if

∑
j∈S

o j (b
j ) �= 0,(

zS

|S| ,
b(S)

|S|
)

, otherwise.

It follows v(S) ≥ w(S).
Thus, we conclude that v(S) = w(S) for any S ⊆ N .

Next we present a result on the core of the TU games associated to non-centralized
production situations.
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Proposition 3.3. Let (x̄N , ε̄N ) be an optimal solution of problem P N . Let (ȳN , δ̄N , γ̄N )
be an optimal solution of problem DN . Then, r̄ = (c1 x̄1, . . . , cn x̄n) is an imputation of
the game (N , v). Moreover, the vector

r̂ = (
γ̄N b1 − δ̄1

N o1(b1), . . . , γ̄N bn − δ̄n
N on(bn)

)
belongs to the core of the game (N , v).

Proof. It is clear that r̄ is an imputation of (N , v). To check that r̂ belongs to the core
of (N , v) it is enough to notice that

∑
i∈N

(
γ̄N bi − δ̄i

N oi (b
i )
) = γ̄N b(N ) −

n∑
i=1

δ̄i
N oi (b

i ) = v(N )

and that the restriction of (ȳN , δ̄N , γ̄N ) to S is a feasible solution of DS for any coalition
S ⊆ N .

To finish this section, we present two remarks.

Remark 3.4. If (x̄, ε̄) is an optimal solution of P N then ε̄ is a payoff undominated Nash
equilibrium of the non-cooperative game defined in Section 2, where K i (ε̄) = ci x̄ i , for
all i ∈ N . Moreover, ε̄ is a weakly productive equilibrium unless v(N ) = ∑

i∈N oi (bi ).

Remark 3.5. Notice that the game (N , v) defined in this section is non-negative and
totally balanced. Since the class of non-negative totally balanced games coincides with
the class of linear production games, there exists a linear production game that induces
the game (N , v). In this case the construction can be done in terms of the elements of the
production system (technologies, prices and resources.)

4. The non-transferable utility cooperative analysis

In this section we consider the production situation from a cooperative point of view, but
assuming that side payments are not possible. Therefore, this situation should be modelled
as an NTU game, more precisely, an NTU market game (see, for instance, Owen (1995)
for details on market games). If a coalition S is to form, players can redistribute their
resources ensuring their individual gains, i.e., they can obtain any tuple (εi )i∈S such that:

• ∑
i∈S εi = b(S),

• εi ≥ 0, for all i ∈ S,

• oi (εi ) ≥ oi (bi ), for all i ∈ S.
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Any such tuple is called a feasible allocation for S. Then, for every S, V (S) is the
set of all z ∈ R

n for which there exists (εi )i∈S , a feasible allocation for S, such that
zi ≤ oi (εi ).

It is immediate to check that, defined in this way, the functions oi are concave (just
note that oi (εi ) = min{εi yi : yi Ai ≥ ci , yi ≥ 0 }), continuous and non-decreasing, so
the core of (N , V ) is non-empty, a competitive equilibrium exists and it provides a core
allocation.

An interesting subset of core(N , V ) is the following set, that will be called
subcore(N , V ):

{z ∈ P B(V (N )) : (zi )i∈S ≥ (yi )i∈S, for all y ∈ V (S) and all S ⊂ N },
where P B(V (N )) denotes the Pareto boundary of V (N ). Next below, we see that there
exist production systems where the subcore of the associated NTU game defined as
above is non-empty, and production systems where it is empty.

Example 4.1. Let N = {1, 2, 3}, c = (4, 6, 8), b1 = (6, 0), b2 = (2, 5), b3 = (1, 5), and
A = ( 1 2 1

1 1 3 ) be a production system. Below we collect the optimal solution sets, optimal
values, and individual consumption of resources of problems Pi for all i = 1, 2, 3.

x1
0 = (0, 0, 0), o1(b1) = 0, b1

0 = (0, 0),

x2
0 ∈ conv{(1/2, 0, 3/2), (0, 1/5, 8/5)}, o2(b2) = 14, b2

0 = (2, 5),

x3
0 = (0, 0, 1), o3(b3) = 8, and b3

0 = (1, 3).

Let us denote by comph{A} the comprehensive hull of the set A. The associated NTU
game is defined by V (1) = comph{0}, V (2) = comph{14}, V (3) = comph{8}, V (1, 2) =
comph{(12, 14), (0, 26)}, V (1, 3) = comph{(16, 8), (0, 24)}, V (2, 3) = comph{(16, 8),
(14, 10)}, and V (1, 2, 3) = comph{E}, where

E = {(0, 14, 24), (0, 30, 8), (16, 14, 8)}.
Let us consider the production situation given agents 1 and 2 described above

and let ({1, 2}, V̄ ) the associated NTU game. In this system, the allocation (0, 26) be-
longs to subcore({1, 2}, V̄ ). But, when all three agents are considered, it holds that
subcore(N , V ) is empty. This comes from the fact that (0, 26, 24) does not belong to
the Pareto boundary of V (N ).

In the sequel we provide a characterization of the non-emptiness of subcore(N , V ). For
any ẑ ∈ V (N ), we define the family of TU-games {(N , v

j
ẑ ), j ∈ N } such that v j

ẑ (N ) = ẑ j

and, for any non-empty S ⊂ N ,

v
j
ẑ (S) =

{
max

(εi )i∈S feasible
o j (ε

j ) if j ∈ S,

0 if j �∈ S.
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Theorem 4.2. It holds that subcore(N , V ) �= ∅ if and only if there exists ẑ ∈ V (N )
such that all the TU-games (N , v

j
ẑ ), j ∈ N , have a non-empty core.

Proof. Assume that all the games (N , v
j
ẑ ), j ∈ N , have a non-empty core (for some

ẑ ∈ V (N )). Then, for every j ∈ N , there exists z j = (z j
1, . . . , z j

n) a core element of
(N , v

j
ẑ ). Hence, for any S ⊂ N and any j ∈ S,

ẑ j =
∑
i∈N

z j
i ≥

∑
i∈S

z j
i ≥ v

j
ẑ (S) ≥ y j ,

for all y ∈ V (S). Thus, there must exist z ∈ subcore(N , V ) with z ≥ ẑ. Conversely,
take ẑ ∈ subcore(N , V ) and define z̄ j = (0, . . . , ẑ j

j , . . . , 0). Clearly z̄ j ∈ core(N , v
j
ẑ ).
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